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Abstract

We combine an expert elicitation and a bottom-up manufacturing cost model to compare the effects of R&D

and demand subsidies. We model their effects on the future costs of a low-carbon energy technology that is

not currently commercially available, purely organic photovoltaics (PV). We find that: (1) successful R&D

enables PV to achieve a cost target of 4c/kWh, (2) the cost of PV does not reach the target when only

subsidies, and not R&D, are implemented, and (3) production-related effects on technological advance—

learning-by-doing and economies of scale—are not as critical to the long-term potential for cost reduction

in organic PV than is the investment in and success of R&D. These results are insensitive to two levels of

policy intensity, the level of a carbon price, the availability of storage technology, and uncertainty in the main

parameters used in the model. However, a case can still be made for subsidies: comparisons of stochastic

dominance show that subsidies provide a hedge against failure in the R&D program.
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1 Introduction1

Meaningfully addressing the problem of global climate change, while affordably meeting the world’s grow-2

ing demand for energy, will require the deployment of several terawatts of low-carbon energy generation3

technologies over the next several decades. The scale of the changes required imply that the societal con-4

sequences of the associated policy decisions are likely to be pervasive—and mistakes costly. Decisions5

involving energy technology policy, and more specifically, policies intended to accelerate the development6

and deployment of low-carbon energy technologies, lie at the center of climate policy debates. The existence7

of multiple market failures implies that private actors will under-invest in climate change-related technology8

improvements, even if measures that internalize environmental externalities are successfully implemented9

(Jaffe et al., 2005). As a result, policy makers must consider a variety of interventions that have the potential10

to stimulate improvements in, and adoption of, low-carbon energy technologies.11

Integrated assessment models of climate change have shown that assumptions about technical change12

may be the most important driver of the costs of addressing climate change (Sue Wing, 2006; Popp, 2006;13

Edenhofer et al., 2006). Moreover, attempts to determine optimal policy design result in vastly different14

normative conclusions depending on assumptions about the expected rate of technical change and the extent15

to which government actions can affect that process. Ongoing debates reveal wide disagreement over the16

anticipated efficacy of various government policies for inducing welfare-increasing technical change. A17

notable division has emerged between those who emphasize the need for “technology push” policies, such18

as R&D investment (Hoffert et al., 2002; Nemet and Kammen, 2007; Prins and Rayner, 2007), and those19

who support mainly “demand pull” policies, such as a carbon price or an adoption subsidy (O’Neill et al.,20

2003; Pacala and Socolow, 2004; Yang and Oppenheimer, 2007). This distinction is echoed in the integrated21

assessment literature, with some analysts modeling endogenous technical change as resulting primarily as a22

result of learning-by-doing (Grubb, 1996; Manne and Richels, 2004), while others model it as predominantly23

a function of R&D (Goulder and Schneider, 1999; Popp, 2004, 2006).324

The literature on the economics of innovation makes clear that both R&D and demand side support25

are needed: demand-pull and technology-push are “necessary, but not sufficient, for innovation to result;26

3For surveys of the literature that discuss this distinction see: Clarke, Weyant and Birky (2006); Clarke et al. (2008); Clarke and
Weyant (2002); Gillingham et al. (2007); Grubb et al. (2002); Jaffe et al. (2002); Loschel (2004); and Sue Wing (2006).
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both must exist simultaneously” (Mowery and Rosenberg, 1979). Successful innovations show the ability1

to connect, or “couple” a technical opportunity with a market opportunity (Freeman, 1974). An important2

observation for this study is that technology push dominates the early-stages of the innovation process,3

while demand pull is more important in the later stages (Freeman and Perez, 1988; Dosi, 1988) Studies of4

the effectiveness of technology policy specifically for energy reach a similar consensus that both are needed5

(Grübler et al., 1999; Norberg-Bohm, 1999; Requate, 2005; Horbach, 2007). The well-established claim that6

both are needed provides only limited normative guidance on the allocation of public funds between the two7

broad categories of support.8

Attempts to econometrically identify the effects of demand-pull and technology-push, e.g. Kouvaritakis9

et al. (2000); Watanabe et al. (2000); Miketa and Schrattenholzer (2004); Klaassen et al. (2005), have so10

far provided limited claims because of their sensitivity to assumptions about the depreciation of R&D as11

a knowledge stock and about the lags between policy signals and decisions to innovate; both of these pa-12

rameters have proven difficult to estimate empirically. Using the observation that most technologies tend13

to decline in cost over time, the notion of the “experience curve” has been widely used to simulate the cost14

reductions that can be expected from programs that subsidize demand (Duke and Kammen, 1999; Wene,15

2000; IEA, 2008). However, observed discontinuities in learning rates, perhaps resulting from omitted vari-16

able bias, limit their reliability. We make use of a methodology that shows that bottom-up cost models17

provide an alternative means to model the interaction between demand and cost reductions (Nemet, 2006).18

The relationship between R&D investments and technical change is even more difficult to model in19

part due to the inherent stochasticity of the R&D process. In such cases, common to R&D management,20

decision analytic techniques are often used to obtain the necessarily subjective judgment of experts who are21

most familiar with the specific technologies (Peerenboom et al., 1989; Sharpe and Keelin, 1998; Clemen22

and Kwit, 2001). A report by the National Research Council (2007) recommends that the U.S. Dept. of23

Energy adopt a process including expert elicitations; and they provided prototype elicitations for carbon24

sequestration, vehicle technologies program, and four other programs. We will draw on the results of Baker25

et al. (Forthcoming), who have performed expert elicitations on solar photovoltaic technologies with respect26

to climate change.27

In this paper we combine expert elicitations with a bottom-up manufacturing cost model to simulate28
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the cost reductions that result from R&D and demand subsidies for organic PV. In addition, we consider1

the effects of carbon prices, the availability of supporting technologies, and alternative assumptions about2

model parameters. We first discuss the role that technology policy may play in reducing the cost of PV so3

that it can play a meaningful role in addressing climate change. In Section 3, we describe a model used to4

evaluate the impacts of demand subsidies and R&D. Section 4 reports the results of simulations of policy5

interventions, including a sensitivity analysis. In Section 5 we consider the risk tradeoffs between the policy6

types and conclude in Section 6 with initial policy implications and research directions.7

2 Climate change, photovoltaics and technology policy8

Low-carbon energy technologies, such as solar photovoltaics, will need to be much less expensive if they9

are to make a meaningful contribution to reducing greenhouse gas emissions. Policy choices will almost10

certainly affect this outcome.11

2.1 Organic solar PV12

Among the wide range of technologies that offer means to address climate change—including nuclear fis-13

sion, carbon capture and sequestration (CCS), efficiency improvements, and renewables—solar is particu-14

larly appealing because it consumes no fuel, has near-zero operations and maintenance costs, and accesses15

a massive resource; more energy from sunlight hits the earth in one hour than annual human consump-16

tion (Lewis, 2007). Additionally, full-life cycle accounting and ecological concerns are modest, especially17

relative to those of biofuels, CCS, and nuclear (Fthenakis et al., 2008). Solar photovoltaic (PV) cells use18

semiconductor materials that convert sunlight directly into electricity by transferring the energy of the light19

to electrons in the cell. While PV’s current contribution to energy supply is trivial, it is of interest because20

costs have come down rapidly. Still, PV is far from being cost competitive in non-niche electricity markets21

and requires substantial future cost reductions for it to be affordably employed on a large scale.22

Purely organic PV, which is the focus of this paper, is particularly intriguing because of characteristics23

that distinguish it from the current generation of PV, which consists of cells made from crystallized silicon.24

Purely organic PVs use a thin film of organic semi-conductor material for photon conversion. Because they25
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don’t require a glass substrate, organic PV cells can be manufactured on highly flexible material, leaving1

open the possibility of a much wider ranges of applications. These manufacturing techniques are more2

amenable to automation and high throughput because they involve chemical rather than mechanical pro-3

duction processes. That they also require only a thin layer of light-absorbing photovoltaic material, rather4

than a crystal structure, means that the amount of input materials needed is very low. The combination of5

highly automated “reel-to-reel” manufacturing processes and small materials consumption gives organic PV6

its most appealing distinguishing characteristics—the potential for very low manufacturing costs (Brabec,7

2004). However, organic PVs are not currently manufactured on a commercial scale. Moreover, the current8

models have very low efficiency, with the highest being around 5% in laboratory conditions (Ginley, 2007);9

this compares to about 15% efficiency for silicon-based solar cells. Finally, organic materials are susceptible10

to degradation in sunlight, leading to concerns about the lifetimes of these cells.11

How inexpensive does PV need to become? The residential PV industry focuses on reaching an electric-12

ity cost that that is competitive with retail electricity prices, around 10–15 cents/kWh (SEIA, 2004). Indeed,13

making PV competitive with retail electricity would create a massive market opportunity for the industry,14

perhaps in the hundreds of billions of dollars. However, in order to make a significant impact on climate15

change, solar will need to be deployed at a larger scale still, on the order of multiple terawatts of capacity.16

This magnitude of demand for PV, combined with urbanization of the world’s population, mean that local17

solar radiation will be insufficient for on-site generation. The resulting need for transmission means that18

PV will need to compete with wholesale prices. And even if carbon constraints raise prices for fossil fuel19

generated electricity, PV will still need to compete with the expected wholesale price of nuclear power, 4 to20

6 cents/kWh (Deutch et al., 2003). To be conservative, we use 4 c/kWh as our target price for large scale PV.21

2.2 Policy choices and cost reductions22

The availability of a diverse set of low-carbon technologies with costs around this level will depend to a large23

extent on policy decisions. The literature on technology policy frequently distinguishes between “demand24

pull” instruments—government actions that stimulate innovation by enlarging the market opportunity for25

new technologies—and “technology push,” those that reduce the cost of innovation by increasing the sup-26

ply of new knowledge (Nemet, 2008). Examples of demand pull instruments include intellectual property27
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regulation, pollution taxes (such as a carbon price), and subsidies for demand. Technology push includes1

government-sponsored R&D, tax credits for R&D by private firms, and support for education.2

In this case of organic PV, policy can impact future cost in multiple ways. First, technology-push policies,3

such as direct government-sponsored R&D, can increase the likelihood of achieving technical breakthroughs.4

Our model assumes that government R&D has an impact on two technical characteristics of organic solar5

cells: (1) their electrical conversion efficiency, and (2) their lifetime. Second, demand-pull policies, such as6

demand subsidies, increase demand for organic PV and thus create opportunities for cost reductions through7

economies of scale and learning by doing. Our model focuses on these two avenues of technical change. We8

note, however, another potential impact: demand-pull policies may stimulate private sector R&D through9

the promise of a larger, less risky market. We do not include this effect directly; the focus of our results is10

on a comparison of the effects of policy on technical and production improvements.11

In our model, we consider the effects of two demand-pull instruments: demand subsidies and carbon12

prices. We model subsidies as a decision variable and treat carbon prices as an exogenous sensitivity. 4 In13

order to assess the effectiveness with which technology policy can induce technical change in organic PV, we14

need to determine how the specific policies—investment in R&D and demand subsidies—affect technology15

improvements. We draw on our prior work to identify and model the effects of these two policy instruments.16

2.3 Combining expert elicitations and a cost model17

As part of a larger project covering a number of technologies, Baker et al. (Forthcoming) performed expert18

elicitations on solar PVs to determine the relationship between R&D investment and technical change. They19

interviewed scientists and engineers with expertise on solar technology. In conjunction with the experts20

they defined success endpoints for each technology and funding trajectories for each project. For purely21

organic solar cells, success was defined in terms of efficiency, lifetime, and manufacturing cost per m2.22

They then elicited probabilities of success from the experts, along with rationales for the probabilities. In23

these elicitations, and in others that were part of the same group (including nuclear, carbon capture, and24

bio-electricity), there was often a large dispersion among experts’ probabilities of achieving low costs. For25

4The reason for the focus on subsidies as the primary demand-pull decision variable in this model is that they can be designed to
exclusively support organic PV, whereas carbon prices enhance demand for low-carbon technologies in general.
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example, one expert reported the probability of achieving a manufacturing cost of $50/m2 as 81%, another1

reported it as 2.5%. The rationale for most of the low probabilities for achieving the cost endpoints was2

that cost reduction is a manufacturing-driven issue and that achieving desirable production costs will require3

much work beyond government-funded lab research. One of the experts noted “Manufacturing costs will4

require a significant amount of development which is much more expensive than basic research and I do not5

believe that $15M/year would be sufficient to meet this cost target with any reasonable probability.”5 The6

optimistic expert indicated that he believed that, given the right technology, the private sector was likely to7

get costs down to a competitive level. This wide disagreement over cost, relative to the disagreement over8

efficiencies, has been observed in other PV elicitation work (Curtright et al., 2007). In general, it may not be9

appropriate to ask scientific experts to assess the likelihood of achieving particular cost targets, since much10

depends on aspects outside the realm of scientific discovery, such as manufacturing processes and market11

demand. As a result, for the current study we use the elicitations of technical probabilities but do not use12

those of future manufacturing costs and instead use a cost model.13

To characterize the relationship between demand and manufacturing cost, we draw on the methodology14

of Nemet (2006), who assembled empirical data to populate a simple engineering-based model identifying15

the most important factors affecting the cost of PV over the past three decades. That study found that three16

factors account for almost all of the observed cost reductions: (1) a two orders of magnitude increase in17

the size of manufacturing facilities that provided opportunities for economies of scale, (2) a doubling in18

the electrical conversion efficiency of commercial modules, and (3) a fall in the price of the primary input19

material, purified silicon. We thus model manufacturing costs as a function of economies of scale; we use20

the expert elicitations to model efficiency improvements; and we treat materials costs as a key sensitivity.21

We developed the following methodology taking the perspective that the combination of expert elicitation22

with a bottom-up manufacturing cost model provides a promising avenue for more robustly understanding23

future technology costs. Figure 1 is a diagram representing the relationship between R&D investment and24

demand subsidies to the cost of electricity. In our model R&D has a stochastic impact on the efficiency25

and the lifetime of the solar cells. We model adoption subsidies as having an impact on cost by enabling26

economies of scale through increasing demand. The solid lines represent deterministic relationships; the27

5From Baker et al. (Forthcoming).
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Figure 1: Influences on cost of PV electricity. Signs (+ and −) represent direction of relationship.

dashed lines represent uncertain relationships; the positive and negative signs represent the direction of the1

relationship; and the bold-faced nodes represent decisions. We use this schema to evaluate the uncertain2

impact of combinations of R&D investments and subsides on the the cost of electricity over time. The3

central question of this paper is how R&D investment policies interact with demand subsidy policies to4

impact the cost of electricity from PV.5

3 A model of the effects of subsidies and R&D on PV costs6

This section describes how we modeled the future cost of PV. First, we discuss the components of manu-7

facturing cost for organic PV, including discussion of which components may decline with increasing scale8

and how we calculate the cost of electricity from PV. Second, we describe how we estimated future demand9

for PV and how changes in demand affect the components of manufacturing cost. Third, we provide details10

about how we simulated subsidies and, fourth, discuss the impacts of R&D.11
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3.1 Cost of electricity from PV1

The objectives of this section are to quantify the components of cost for producing electricity from organic2

PV, and to identify the factors influencing these components so that costs can be dynamically modeled. For3

the former, we draw on detailed engineering-based studies of manufacturing costs, which we describe below.4

To identify the influences, we use the results of a bottom-up model developed by Nemet (2006) to esti-5

mate how changes in the components of the PV manufacturing process have affected the cost of PV modules6

over time. A useful result for the current study is that certain components of cost improved with R&D7

investment, while others responded to increased deployment of the technology. In the case of crystalline sil-8

icon PV, almost all of the cost reductions observed over two decades are attributable to three factors, which9

responded to distinct influences: (1) the doubling in electrical efficiency resulted from investments in R&D,10

(2) economies of scale in manufacturing were driven by increased expectations about future demand, and (3)11

the decline in the costs of input materials, primarily purified silicon, was an exogenous spillover benefit from12

the information technology industry. We apply this identification of influences on PV costs to the current13

study and categorize changes in each of the cost components as a result of R&D, manufacturing scale, or14

exogenous. A central assumption in our model is that manufacturing and balance of system costs decrease15

with scale, and cell efficiency and lifetime increase (stochastically) with R&D. In the rest of section 3.1 we16

describe the levels of these components for organic PV and describe a simple cost model that we use to17

estimate the levelized cost of electricity from organic photovoltaics.18

3.1.1 Manufacturing costs19

This section uses the results of an analysis by Kalowekamo and Baker (2009) of the estimated costs of man-20

ufacturing purely organic PVs. Within this description we discuss which of the factors are likely to change21

with increases in manufacturing scale, drawing on that study as well as work on thin-film PV manufacturing22

(Maycock, 2003; Keshner and Arya, 2004). Table 1 summarizes the cost structure we use in our model.23

Materials costs In our base case, costs for materials decline through economies of scale in production24

and through learning-by-doing, which enables the use of less input material per unit of output (Keshner and25

Arya, 2004). We also assess, in a sensitivity analysis, the case in which materials costs are static, perhaps26
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Table 1: Components of base case manufacturing cost and relationship between unit cost and output. Values
for costs are from Kalowekamo and Baker (2009) and values for b are discussed in section 3.2.3.

Cost component Costs Portion Unit cost b
($/m2) of total f (output) value

Materials 28.15 37% Declining 0.2
Processes (labor costs) 8.00 11% Declining 0.2
Processes (capital costs) 23.50 31% Declining 0.2
Overhead (fixed) 8.18 11% Declining 0.2
Overhead (variable) 8.18 11% Static 0
Total 76.00

due to scarcity offsetting scale and learning by doing.1

Process costs We divide process costs into their labor and capital components and assume in our base case2

that both labor and capital decrease with scale, per unit of output. Labor productivity increases with scale3

both as a result of learning by doing (Arrow, 1962) and because higher output justifies investment in new spe-4

cialized machinery that allows the substitution of capital for labor (Neuhoff et al., 2007). In addition to spe-5

cialization, capital productivity improves with scale because each of the steps involved in manufacturing—6

substrate preparation, screen printing, vacuum evaporation, encapsulation, electrical interconnection—either7

exists as, or is analogous to, an industrial process that exhibits economies of scale properties. We include8

sensitivity analysis of the case in which these costs do not fall with scale.9

Overhead costs A portion of overhead costs—rent, electricity, water, machinery maintenance, and prod-10

uct warranties—include fixed costs, which can be dispersed over a larger output. In addition, warranties11

will become less expensive as reliability improves. On the other hand, some of these costs, such as water12

and electricity use, are variable, providing minimal per unit savings from larger production (Fthenakis and13

Alsema, 2006). We assume that half of these overhead costs are fixed and half are variable, and apply a14

scaling factor only to the former.15
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Table 2: Base case values for calculating levelized electricity cost
Variable Symbol Baseline value Treatment Drivers

(2020) in Model of change
Manufacturing cost M $76/m2 dynamic Manf. scale
Yield Y 95% static —
BOS cost BOS $75/m2 dynamic Manf. scale
Efficiency η 5% dynamic R&D
Peak solar radiation S 878W/m2 static —
Cost at peak Cp $3.53/Wp dynamic M,BOS, η
Mean solar radiation I 4.4kWh/m2/day static —
Capacity factor F 18.3% static —
Lifetime L 5 years dynamic R&D
Discount rate δ 7% static —
O&M OM $0/kWh static —
Levelized elec. cost C $0.54/kWh dynamic Cp, L

3.1.2 Balance of Systems Costs1

Balance of systems (BOS) costs include all of the labor and capital necessary for a PV system to produce2

electricity in addition to the PV panels themselves. With current technology, these costs include inverters to3

convert direct current to alternating current, as well as the rooftop mounting equipment, wiring, and labor4

involved with installing systems. Historically, the costs of inverters have declined with scale in produc-5

tion, although installation costs have not (Schaeffer et al., 2004; Hegedus and Okubo, 2005). In this case,6

we assume that total BOS costs decline with scale. The shift toward building-integrated installations and7

the possibility of large generating facilities, both of which obviate the need for custom installation, make8

large reductions in BOS costs feasible. We analyze the sensitivity of the model to the case in which these9

reductions are limited.10

3.1.3 Levelized electricity cost11

To compete in the market place, PV will need to have a levelized cost of electricity (LEC), in $/kWh, compa-12

rable to competing means of electricity generation. Here, we calculate LEC as a function of manufacturing13

and BOS costs, technical characteristics of the devices (lifetimes and efficiencies), and incoming solar radi-14

ation. We provide an example using our base case and list the values in Table 2.15
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We begin with a panel manufacturing cost (M ) of $76 per square meter and a yield (Y ) of 95%, resulting1

in a cost per usable device of $80/m2. Adding $75/m2 for BOS costs results in a total cost per area of2

$155/m2. Next, we make assumptions about incoming solar radiation, both at peak and on average. Based3

on observations from seven large urban areas around the world, we use a value for peak incoming solar4

radiation (S) of 878 W/m2 (Nemet, 2007). At this level of sunlight, a PV device with 5% efficiency (η)5

produces 44 W/m2. Dividing this areal cost by the peak power generated per square meter gives $3.53 per6

peak watt of power output (Cp):7

Cp =
M

Y
+ BOS

S · η
(1)

Costs are sensitive to the solar resource at the location installed; the full range of values for S from the work8

cited above produces a range of costs of $2.80–4.98/W.9

We apply a capacity factor of 18.3% to take into account that PV cells only operate at a fraction of peak10

power when averaged over the course of a year, due to the diurnal cycle, seasonal variation in sun angle, and11

cloud cover.6 We then calculate the levelized cost of PV electricity (C) by amortizing the capital cost of a12

watt of PVs, Cp, at a 7% discount rate (δ) over a 5-year lifetime (L) ,and dividing the result by the energy13

produced in a year: F multiplied by the number of hours in a year (h), 8760 (Stavy, 2002).714

C =
Cp

F · h
· δ�

1− (1 + δ)−L
� (2)

As a demonstration of the sensitivity of C to the main items we assess in this study, Table 3 shows the15

effects of manufacturing costs and combinations of efficiency and lifetime. As we discuss in the following16

sections, successful R&D will move the technical characteristics of PVs to the right—to higher efficiencies17

and lifetimes. Increased demand has the effect of moving the technology downward on the table, to lower18

manufacturing costs.19

6See the Appendix for our calculation of an 18.3% capacity factor.
7We assume maintenance costs (OM) to be zero. The discount rate of 7% is also used in a recent analysis of solar subsidies (Benthem

et al., 2008). Other studies advise using a lower rate for public policy analysis, such as 4.5%, even if using a private rather than a social
discount rate (Moore et al., 2004).
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Table 3: Sensitivity of levelized cost (C), in $/kWh, to manufacturing costs and combinations of technical
characteristics of PVs.

Efficiency (η): 5% 15% 31%
Lifetime (L): 5y 30y 15y
Manf. cost (M ):
$100/m2 0.61 0.08 0.04
$50/m2 0.43 0.06 0.03
$25/m2 0.35 0.05 0.03

3.2 The effect of changes in demand on PV costs1

In this section we describe our methodology for calculating the effect of changes in demand for PV on its2

levelized cost over time. We estimate the quantity of new PV systems demanded, and the resulting scale3

of manufacturing plants, using demand curves for PV electricity. We apply these changes in manufacturing4

scale to the cost model described in section 3.1 to estimate cost reductions that result from increasing demand5

for PV over time. The model operates in 5-year increments.6

3.2.1 Demand for PV electricity7

We derive future demand curves for PV using MiniCAM, a technologically-detailed integrated assessment8

model.8 Demand for PV depends in part on its cost and in part on the characteristics of competing and9

supporting technologies. Assumptions for technologies other than solar PV are based on the version of10

MiniCAM used in the Climate Change Technology Program (CCTP) reference case (Clarke, Wise, Placet,11

Izaurralde, Lurz, Kim, Smith and Thomson, 2006). In particular, nuclear power is assumed to be widely12

available but the cost of CCS is assumed to be prohibitively high. We consider climate policy as an exoge-13

nous feature and take into account carbon prices, whether through a tax or a cap-and-trade scheme, of $0,14

$10, $100, and $1000 per ton of carbon.15

To account for the effects of PV’s intermittence, the analysis here was conducted under two possible16

regimes. In the base case, which we call “backup generation”, we assume that natural gas power plants are17

required as backup generation to ensure grid reliability. As PV’s share of electricity generation increases, the18

amount of back up generation required per PV installation increases such that once PV deployment reaches19

8See Brenkert et al. (2003) and Edmonds et al. (2004) for more discussion of the model.

13



0 5 10 15 20
0

0.1

0.2

0.3

0.4

Demand (TW of capacity)

$/
kW

h

Backup generation

$0/tC
$1,000/tC

0 5 10 15 20
0

0.1

0.2

0.3

0.4

Demand (TW of capacity)

$/
kW

h

Free storage

$0/tC
$1,000/tC

Figure 2: Demand curves for PV electricity in 2040.

20%, one MW of back up capacity is required for each additional MW of PV capacity. In the second regime,1

“free storage,” a zero-cost electricity storage technology is available so that no additional backup is required.2

As an example, Figure 2 shows demand curves for PV in 2040, which we derived from MiniCAM. The3

figure on the left uses the base case assumption of backup generation, and the figure on the right uses the4

assumption of free storage. To show the effect of a carbon price in each case, we display demand curves5

for the extreme cases of $0 and $1000/ton. Because the demand curves were originally defined in terms of6

energy demanded (exajoules), we convert demand into units of PV capacity needed to produce that energy7

(terawatts). Using the assumptions from above for capacity factor, we estimate the amount of installed PV8

capacity at time t required to provide the PV energy demanded:9

Kt =
Et

h · F
(3)

where K is total installed capacity, measured in TW, and E is total energy demand, measured in TWh.10

Note that the availability of free storage has little effect when the cost is high, ≥ 0.10 cents/kWh; but has a11

large effect at lower costs, where the constraint on backup effectively constrains the amount of solar that is12

deployed.13
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3.2.2 The effect of changes in demand on manufacturing scale1

In this section we address the question: how large would manufacturing facilities become at a new level2

of demand? Meeting demand for PV electricity requires having a sufficient quantity of PV installed. To3

calculate the resulting changes in the size of manufacturing plants, we estimate the annual new capacity being4

manufactured in each 5-year period, kt. We assume that manufacturers have five years to build sufficient5

capacity to meet a new level of demand, so demand is satisfied at the end of each 5-year period.6

In each 5-year period, the quantity of PV systems manufactured is equal to the quantity of new systems7

necessary to meet the new level of demand, which is the sum of incremental capacity demanded and re-8

placements of retired PV systems. Incremental capacity is the difference between the total GW of installed9

capacity in period t, Kt and the installed capacity in the previous period, Kt−5. As systems are installed, we10

project the date at which they will be retired based on the lifetime (L) of systems when they were installed,11

t + L. Note that the lifetime of systems can change over time as the technology improves. We describe the12

quantity of capacity retired at each time t as Rt.9 The new PV capacity installed in time, t is thus:13

kt = Kt −Kt−5 + Rt (4)

3.2.3 The effect of manufacturing scale on cost14

Manufacturing costs fall with increasing plant size due to economies of scale, substitution of capital for15

labor, and learning-by-doing. We apply scaling factors to each of the components of manufacturing cost to16

estimate the cost reductions that will result from larger production volumes. Each of the five manufacturing17

cost components described in Section 3.1.1, i has a manufacturing cost of mi in units of $/m2. The total18

manufacturing cost, M is the sum of the five mi values. The effect of increasing plant size on manufacturing19

cost M at time t is estimated using equation 5 below.20

We use an overall scaling factor for M of b = −0.18, based on previous studies of economies of scale21

in PV, semi-conductors, and engineering equipment (Remer and Chai, 1990; Gruber, 1996). Because we22

are interested in estimating a lower bound on cost, we chose a value toward the lower end of the range of23

9In our simulations we include retirements of legacy crystalline PV systems, which are installed through 2020, when organic PV
begins to replace it.
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Table 4: An example of the effect of manufacturing scale on manufacturing cost of PV modules and elec-
tricity cost of PV systems using base case assumptions from above.

Plant size Cost LEC
MW/year ($/m2) ($/kWh)

M C
10 80.0 0.54
20 70.8 0.47

100 53.7 0.35
500 41.3 0.26

1,000 37.0 0.23
2,000 33.3 0.21

12,000 25.9 0.15

assumptions used in studies that calculate future cost savings for large scale PV plants, b = −0.07 to −0.201

(Bruton and Woodock, 1997; Ghannam et al., 1997; Maycock, 1997; Frantzis et al., 2000; Rohatgi, 2003;2

Frantzis et al., 2000). Because our study differentiates between manufacturing costs that decline with scale3

and those that do not, we set the scaling factors for the individual components, bi such that the overall effect4

on M is equivalent to b = −0.18. Consequently, a scaling factor of bi = −0.20 was applied to each of the5

cost components that show cost reductions with scale and of bi = 0 for those costs that are static (see Table6

1). Manufacturing costs are calculated in each period as follows:7

Mt =
5�

i=1

mi,t−5 ·
�

kt

kt−5

�bi

(5)

Because we assume that the manufacturing scale of the price-setting firm is proportional to the size of8

demand for new PV systems kt, the scaling factor is also proportional to changes in k.10 Table 4 shows9

the effect of increasing plant size on the cost of manufacturing. The cost of PV electricity that results from10

this new level of M is calculated using equations 1 and 2 in section 3.1.3. In our model, costs do not rise if11

demand shrinks; we assume that plants last many years, so reduced demand for new PV does not result in12

the construction of new smaller manufacturing facilities.13

10This assumption is consistent with industry heuristics gleaned from interviews (Taylor et al., 2007).
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3.3 Simulating the effects of a subsidy1

In this section we describe how we use the equations above to simulate the effects of a subsidy on the cost2

of PV electricity over multiple time periods. We run our model in 5-year time steps beginning in 2020 until3

2050. Dropping the leading 20, we let t ∈ [20, 25...50].4

We assume that PV manufacturers make decisions about capacity expansions five years in advance. They5

need this lead time: (1) to secure access to long-term contracts for raw materials and component parts, (2)6

to integrate increasingly complex manufacturing machinery at large scales, and (3) to improve the reliability7

of evolving PV system designs and materials. In forecasting future demand for planning expansions, these8

manufacturers consider their current costs and subsidies. They are myopic in the sense that they do not9

consider the impact that an expansion will have on their manufacturing cost 5 years hence. This assumption10

of myopia fits with observations that PV firms are operating well below their optimal scale despite rapid11

growth in demand.12

To begin, we assume that organic PV becomes available as a commercial product in 2020, that manufac-13

turing output is at pilot plant scale (k20 = 1 GW), and that manufacturing and electricity costs start at the14

base case values described in Tables 1 and 2. Thereafter, the model proceeds as follows. In year t the firms15

produce new inventory equal to kt, their currently installed capacity. They charge a price, before subsidies,16

equal to their costs in the previous period, Ct−5, as this will clear the market given their current installed17

capacity. Immediately following t, firms discover their new manufacturing cost, Mt and their resulting18

cost of electricity Ct. To determine how much manufacturing capacity kt+5 to have available for the next19

period, firms predict demand Kt+5, based on the expected costs that consumers will face after subsidies,20

Pt+5 = Ct − st+5.21

We assess three PV subsidy schemes (see Table 5). Producers of PV electricity receive income from the22

the government according to how much electricity they produce each year. Subsidies are no longer available23

once the subsidized cost, Pt reaches the target price, $0.04/kWh. Firms plan capacity expansions for 202524

aware of s25. They predict the price of PV electricity in 2025 to be P25 = C20−s25. They use demand curves25

for 2025 and equation 3, to determine predicted demand, K25, and from that, use equation 4 to determine26

the required manufacturing capacity k25. As an illustration of how this model works, Table 6 shows the27
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Table 5: Values for s ($/kWh) under three subsidy schemes.
t 20 25 30 35 40 45 50

No subsidy - - - - - - -
Low subsidy - 0.20 - - - - -
High subsidy - 0.25 0.10 0.10 0.05 - -

Table 6: Illustrative output using base case assumptions and a high subsidy program.
2020 2025 2030 . . . 2050

Description Definition Units t=20 25 30 50
Subsidy st (s3.3.1) ($/kWh) - 0.25 0.10 -
Subsidized cost Pt=Ct−1-st ($/kWh) 0.54 0.29 0.15 0.16
Demand for PV Kt (eq.3) (GW) 1 21 112 104
New capacity kt (eq.4) (GW) 1 30 141 183
Retirements Rt (s3.2.2) (GW) - 10 50 180
Manf. cost Mt (eq.5) ($/m2) 80 40 32 31
B.O.S. cost BOSt (s3.1.2) ($/W) 75 33 24 23
Unsubsidized cost Ct (s3.3) ($/kWh) 0.54 0.25 0.19 0.16

calculation of variables under the high subsidy case, using our base case assumptions for manufacturing1

cost, efficiency, and lifetime, as well as assumptions of no free storage and no carbon price.2

3.4 Simulating the effects of R&D3

The methodology so far describes how subsidies affect PV costs, for a given efficiency and lifetime. In this4

section, we incorporate the impacts of R&D on PV costs by using expert elicitation about the likelihood that5

R&D expenditures will lead to improvements in efficiencies and lifetimes for purely organic PVs.6

Baker et al. (Forthcoming) conducted an elicitation on four key characteristics of organic PVs: efficiency,7

lifetime (also called ‘stability’), and two hurdles related to manufacturing costs. For the purposes of this8

paper we will consider only the probabilities to achieve efficiency and lifetime, since we use the cost model9

above to assess manufacturing costs. The results of these elicitations are presented in Table 7. The two R&D10

programs had different definitions of success and different funding trajectories. The first program, denoted11

here as “Low R&D”, has a goal of 15% efficiency and a 30 year lifetime. The probabilities reported here are12

based on assumed U.S. government funding for this program of $15M/year for 10 years.11 The goal for the13

11The experts did consider the impact that government funding would have on private sector funding when providing their probabil-
ities, but did not make explicit their assumptions about the proportions of public and funding.
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Table 7: Expert elicitation of the probabilities of achieving efficiency and lifetime targets under two R&D
programs for purely organic PVs.

Low R&D High R&D
Ex. 1 Ex. 2 Ex. 3 Avg. Ex. 1 Ex. 2 Ex. 3 Avg.

Probability for
efficiency

0.85 0.90 0.80 0.85 0.15 0.50 0.30 0.32

Probability for
lifetime

0.50 0.30 0.50 0.43 0.60 0.80 0.25 0.55

Total probabil-
ity

0.43 0.27 0.40 0.37 0.09 0.40 0.08 0.19

second program, “High R&D”, is to achieve 31% efficiency and a 15 year lifetime. The probabilities reported1

in this case are based on assumed U.S. government funding for purely organic solar cells of $80M/year2

for 15 years. As an additional elicitation for the purposes of this paper, we asked the experts about the3

relationship between the two programs. Specifically, we asked them to re-consider the High R&D program:4

$80M/year funding for 15 years, with an expressed goal to achieve an efficiency of 31%. We then asked for5

the probability that those goals would not be achieved but that the goals of the Low R&D program would.6

On average, the probability of achieving 15% efficiency and a 30 year life time, under the High R&D case7

was 39%.8

For this paper we will use the simple average of the experts’ overall probabilities for efficiency and9

lifetime, recognizing that any single measure should be treated with some caution (Keith, 1996). More so-10

phisticated methods (Clemen and Winkler, 1999) using the same raw data will be employed in subsequent11

work. We use these elicitation results (see Table 8) to determine the values for ηt (efficiency) and Lt (life-12

time). If R&D is successful and the goals for lifetime and efficiency are ultimately reached, we assume that13

the technical improvements that result from the R&D program begin to appear in 2040 and reach their full14

level in 2050. The lifetimes and efficiency levels in 2040 are the midpoint of the base case levels and the15

2050 levels; and the 2045 levels are the midpoint of the 2040 and the 2050 levels. We examine the sensitivity16

of this assumption on timing in section 4.2.17
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Table 8: Probability of achieving three combinations of technical characteristics of organic PVs as a function
of public R&D investment.

PV characteristics
Lifetime (L): 5y 30y 15y

Efficiency (η): 5% 15% 31%
No R&D 1.00 0.00 0.00
Low R&D 0.63 0.37 0.00
High R&D 0.42 0.39 0.19

4 Cost of PV electricity under deterministic R&D outcomes1

We simulated efforts by the government to fund R&D and subsidize demand at three levels of policy intensity2

each. These results use the assumptions of backup generation and no price for carbon, the most conservative3

combination in that it produces the minimum level of demand for PV. The results for R&D in this section4

are deterministic in that they are conditional on each of the two R&D programs reaching their stated goals:5

η = 15%, L = 30 for Low R&D; and η = 31%, L = 15 for High R&D.6

Table 9 shows the costs of PV electricity in 2040 and 2050 under the nine combinations of government7

technology programs. While both subsidies and successful R&D programs reduce costs, the effect of suc-8

cessful R&D on cost in 2050 is an order of magnitude larger than the effect of subsidies. Subsidies are9

relatively more effective in 2040 than in 2050, but the effect of successful R&D is still much larger, even10

though in our model only half of the benefits of R&D arrive by then. Even the highest subsidy levels do11

not achieve cost effective organic PV without successful R&D. The cost of PV without successful R&D12

never falls below 16c/kWh, far from the target level of 4c/kWh. Note also the counterintuitive result that,13

under successful R&D programs, the high and low subsidy programs produce costs in 2050 that are slightly14

higher than without the subsidy program. This result occurs because the subsidy programs shift a substantial15

amount of PV production to earlier years; without subsidies, almost all of the demand for PV electricity in16

2050 is met by production between 2040 and 2050. Consequently, without subsidies the scale of manufac-17

turing plants in 2050 reaches a larger more efficient scale and the cost in 2050 is lower. The curves in Fig. 318

show the path of cost reductions over time and the relationships among the policy combinations. The three19

subsidy curves in each Fig. 3a, b, and c are much more similar to each other than the three R&D curves in20

each Fig. 3d, e, and f.21
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Table 9: Cost of PV electricity in 2040 and 2050 ($/kWh). Low and High R&D cases are conditional on
program goals for efficiency and lifetime being reached.

Subsidy
None Low High

2040
None 0.536 0.201 0.162

R&D Low 0.111 0.042 0.035
High 0.087 0.033 0.028

2050
None 0.536 0.200 0.162

R&D Low 0.014 0.016 0.016
High 0.009 0.010 0.010

20 30 40 50

1c

10c

$1

a. No R&D    

No sub.
Low sub.
High sub.
4c goal

20 30 40 50
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b. Low R&D   
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$1

c. High R&D  
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$1

d. No subs.  

No R&D
Low R&D
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4c goal

20 30 40 50

1c
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e. Low subs. 
20 30 40 50

1c

10c

$1

f. High subs.

Figure 3: Impact of subsidies and R&D on cost per kWh of PV electricity. Low and High R&D cases are
conditional on program goals for efficiency and lifetime being reached. Costs are on a log scale.
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4.1 Scenarios for storage availability and carbon prices1

We compare four scenarios here: (1) the baseline scenario of $0/ton carbon price and backup generation2

needed, (2) $1000/ton carbon and backup generation needed, (3) $0/ton carbon and free storage technology3

available, and (4) $1000/ton carbon and free storage technology available.12 The policy combination we use4

to evaluate these scenarios is one with a mid-range cost outcome, High subsidies and a successful Low R&D5

program.6

Adding the availability of “free” energy storage technology and increasing the carbon price from $0 to7

$1000/ton both increase the demand for PV.13 This larger production leads to cost reductions in manufactur-8

ing and PV becomes less expensive than the baseline for all three alternative combinations of carbon prices9

and free storage availability (Table 10). The relative importance of the effects of a high carbon price and10

free storage change over time. In 2040, the carbon price is more important than free storage, although the11

availability of free storage does produce cost reductions if there already is a $1000 carbon price. The small12

effect that free storage has on its own is due to the relatively small overall demand for PV in 2040 when there13

is no carbon price; the benefits of free storage only become important once PV demand exceeds 20% and the14

need for backup capacity increases. By 2050, free storage plays the more important role. The diminished15

effect of a high carbon price likely results from assumptions about nuclear power, the primary alternative16

low-carbon technology in MiniCAM. While a high carbon price benefits both nuclear and PV, free storage17

only benefits PV. Because the benefits of R&D have been fully realized by 2050, demand for PV becomes18

very large; thus having free storage available becomes important, more important than a high carbon price.19

The relative effectiveness of successful R&D and subsidies do not change under varying assumptions20

about storage and carbon prices; under all four scenarios, R&D success has a greater effect on cost reductions21

than do subsidies in 2050. High carbon prices do enhance the relative impact of subsidies and free storage22

increases the relative impact of R&D success, but in both cases the effects are small.23

12The assumption that backup generation is needed implies that electricity storage is prohibitively expensive. In order to assess the
impact of this assumption, we provide comparisons with the other extreme, which is that storage is free.

13In combination, they not only lead to even larger amounts of new PV, but shift the peak PV production much earlier, to 2035.
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Table 10: Effects of carbon prices and storage availability on PV cost.
Storage availability

Carbon Backup Free
price generation storage

2040
$0/ton 0.035 0.035

$1000/ton 0.026 0.019
2050

$0/ton 0.016 0.012
$1000/ton 0.015 0.012

4.2 Sensitivity analysis1

Sensitivity analysis shows that our two main claims are robust to uncertainty in the data used to populate the2

model. First, the analysis supports our claim that the base case set of assumptions represents an upper bound3

on the effectiveness of a subsidy program. Second, our finding, that the cost-reducing effect of successful4

R&D is larger than the effects of subsidies, is supported across all alternative scenarios.5

We examined the sensitivity of these results to five sources of uncertainty in the choice of parameter6

values in our model:7

1. We reduced the magnitude of the scaling factors, b = −0.20, to a more conservative estimate of8

b = −0.15.9

2. Similarly, we adjusted the scaling factor for BOS from bBOS = −0.20 to bBOS = 0.04; resulting in10

a cost reduction of approximately one third the reduction in the base case.11

3. In the base case we assumed that the cost of input materials for the production of PV cells decreases12

with increasing manufacturing scale. Here we assume that the cost of materials stays constant at the13

initial level, such as might occur due to increasing scarcity of the material offsetting scale effects.14

4. We delayed the subsidies for ten years such that they begin in 2035 so that they are timed to coincide15

more closely with R&D effects.16

5. We assumed that the outcomes of R&D begin to be realized ten years earlier, in 2030.17
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Figure 4: Sensitivity analysis: comparing cost of PV electricity in two policy scenarios for 2040 and 2050.

Of the five cases analyzed, the only alternative to the base case that results in a lower cost in 2040, is1

when the benefits of R&D begin 10 years earlier.14 In every other case, costs are higher. We believe that2

none of the parameters analyzed here could reasonably altered in the opposite direction from the base case.3

The most influential changes are removing the returns to scale for material costs and BOS. Reducing the4

overall returns to scale parameter had a smaller effect, as did delaying the onset of subsidies for ten years.5

Figure 4 compares the effects of successful R&D and subsidies under the 6 cases in both 2040 and 2050.6

Supporting the robustness of our results, the sensitivity analysis shows that the subsidy program never has7

a stronger effect than the successful R&D program. In fact, each of the alternative assumptions makes the8

R&D program look relatively stronger than the subsidy program compared to the base case. The base case9

assumptions make the strongest possible case for the effectiveness of the subsidy program. These results also10

show that the effectiveness of high subsidies are in no case close to the effectiveness of successful R&D.11

14See Appendix for detail on these comparisons.
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4.3 Social costs of technology policy1

A consistent result across scenarios is that subsidizing a large demand for PV before the benefits of R&D2

arrive can be expensive. Here we calculate the net present cost of a subsidy,3

Ys =
50�

t=20

δstEt

where st is the subsidy on energy (Et) and δ is the discount rate. Under the base case assumptions, no carbon4

tax and no free storage, the net present social cost of subsidies is $5B for the low subsidy program and $80B5

for the high subsidy program. These values are in line with recent estimates of the cost of subsidizing the6

current generation of PV (IEA, 2008). Note that they are considerably higher than the R&D amounts we7

have considered, which have a net present value of $0.1B and $0.7B. We also note that the cost of each8

subsidy program increases as demand for solar electricity increases. For example in the presence of a $10009

carbon tax, the cost of the low-subsidy program rises to $30B and the high subsidy program rises to $3T.10

Given the wide range of subsidy program costs, it may be useful in future work to use this model to optimize11

the timing and level of subsidies—especially given various assumptions about carbon prices and storage12

technology.13

5 Probability distributions over cost of PV electricity14

In the previous section we discussed how subsidies compared with R&D, assuming the R&D outcomes were15

successful and known. In this section we relax the assumption of deterministic outcomes and employ the16

results of the expert elicitation in order to consider how policy choices affect probability distributions over17

the cost of electricity from PV. The primary intention of this section is to demonstrate the methodology. To18

elucidate comparison, all of the results presented in this section are costs of PV electricity in 2040, which is19

when both R&D effects and subsidy effects are simultaneously active.20
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5.1 Probability distributions comparisons1

There are a total of nine possible policy combinations of no, low, and high subsidies with no, low, and high2

R&D. No R&D has a deterministic outcome, as do the three levels of subsidies. But low and high R&D3

have probability distributions over outcomes. Figure 5 compares the cumulative probability distributions4

of different policy combinations. The left panel compares three subsidy levels given high R&D; the right5

panel compares two R&D levels, given a low subsidy. Each bar on the graph represents the probability of6

achieving the electricity cost (C) on the horizontal axis, or better (lower C). For example, the probability7

of achieving C40 ≤ 3c/kWh given high R&D and a low subsidy is about 20%. A better program would8

have higher bars farthest to the left. The left panel shows that without a subsidy, there is zero probability of9

achieving a cost lower than 6 c/kWh; and if R&D fails completely the cost will be greater than 18 c/kWh.10

In contrast, with a high subsidy, there is a 60% probability of the best outcome, a cost of less than 3 cents;11

and even if R&D fails altogether, a cost between 12 and 15 c/kWh will be realized. The right panel shows12

the impact of the two R&D programs, assuming a low subsidy. The high R&D program has a probability13

of 20% of achieving a cost less than 3 c/kWh; and a probability of 60% of achieving a cost no higher than14

6 c/kWh. The best outcome for the low R&D program is to achieve a cost between 3-6c/kWh, which has a15

probability of 38%. Both programs are guaranteed to achieve a cost of no more than 18 c/kWh, because of16

the subsidy.17

5.2 Risk tradeoffs18

In this section we apply the methodology of stochastic dominance in order to get a sense of how different19

policies may be compared in a choice under uncertainty framework. Stochastic dominance is frequently20

applied in economics and finance to identify preference orderings over uncertain options for entire groups of21

agents (see for example Levy (1992)). In particular, stochastic dominance can identify whether a particular22

option is riskier than another option (Rothschild and Stiglitz, 1970). Here, we identify what effects subsidies23

and R&D have on the risk profile of outcomes, in order to clarify the trade-offs between low-risk subsidies24

and risky R&D.25

In order to make stochastic dominance comparisons among the policy combinations, we reverse the26
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Figure 5: Cumulative probability distributions of PV electricity cost in 2040 (C40) for five policy combina-
tions.

direction of the horizontal axis of the cumulative distribution functions (CDFs) in Figures 6 and 7. The1

least preferred outcomes are now on the left and the most preferred are on the right. The top of the shaded2

area reflects the probability that the electricity cost will be equal to the value on the horizontal axis or3

higher. For example, in the left panel of Figure 6, the probability that C40 is 20 c/kWh or higher, given high4

R&D, is about 40%. We consider two classes of stochastic dominance. A probability distribution, G, First5

Order Stochastically Dominates (FOSD) another, H , if the CDF of G is everywhere below the CDF of H .6

FOSD implies that all decision makers who prefer a lower cost to a higher cost will choose the distribution7

that dominates the other. A probability distribution, G, Second Order Stochastically Dominates (SOSD)8

H if the cumulative area of the difference H − G is always greater than zero. If a probability distribution9

SOSD another, then all risk averters, who also prefer a low cost to a higher one, will choose the dominant10

distribution. Thus, if we find a dominance relation, we can say something about the relative riskiness of11

multiple policies. Note, however, that we are only comparing probability distributions over the benefits of12

the policies, in terms of achieving a cost target. We will compare the social costs of the policies and welfare13

effects on the economy in subsequent work.14

Figure 6 compares two R&D programs in the left panel, and two subsidies in the right panel. The left15
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Figure 6: Cumulative distribution functions for cost of PV electricity (c/kWh) for four policy combinations.
The left panel compares High and Low R&D funding, assuming no subsidy. The right panel compares no
subsidy with a high subsidy, assuming low R&D funding.

panel shows that the High R&D program FOSD the Low R&D program. Moreover, it illustrates that the1

effect of a High R&D program is to shift the CDF down, that is, it primarily reduces the probability of bad2

events and increases the probability of good events. The panel on the right shows that a High subsidy FOSD3

no subsidy; and that a subsidy has the effect of shifting the CDF to the right. That is, it primarily reduces4

the cost attached to a particular probability of success: the worst event becomes less bad, the good event5

becomes better. While it is not surprising that the higher intensity policies FOSD the lower intensity policies,6

the varying effects of the policies do reveal that subsidies have a benefit in that they make the worst case7

much better than the case without subsidies.8

Finally, we compare R&D and subsidies. Figure 7 compares a strategy of high R&D investment and no9

subsidy; with no R&D investment and a high subsidy. The CDF for the 2nd strategy is simply a rectangle10

starting at 13c/kWh and moving to the right. The CDF for the first strategy starts at 54c/kWh, and stays below11

the dotted line. There is no FOSD between these two policy combinations. That means that we cannot say12

that all decision makers would prefer one to the other. The reason is that though the High R&D/No Subsidy13

is much riskier than No R&D/High Subsidy; it also has the possibility of a very good payoff, thus some14

risk-preferring decision makers may prefer it. However, No R&D/High Subsidy does SOSD High R&D/No15

Subsidy. A subsidy with no R&D is “less risky”, since it avoids the worst case of a very high electricity cost,16

and the expected cost is lower as well. This result implies that if (1) the goal were simply to achieve as low17
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Figure 7: Comparison of cumulative distribution functions for cost of PV electricity (c/kWh) in 2040 under
R&D and under subsidies.

an electricity cost as possible, and (2) the two programs had equal costs, the No R&D/High Subsidy program1

would be strictly preferred by all risk averters. We note, however, that neither of these conditions necessarily2

holds. These results imply that the value of subsidies is that they provide a hedge against the possibility that3

breakthroughs in technical change fail to take place. In a choice under uncertainty framework, subsidies4

provide a benefit in reducing risk.5

6 Conclusion6

This paper describes a methodology to compare the effects of demand subsidies and R&D on the costs7

of a low-carbon energy technology that is not currently commercially available. The combination of an8

expert elicitation and a manufacturing cost model allows us to compare the outcomes of policy choices over9

a variety of scenarios. We find that (1) successful R&D enables PV to achieve a cost target of 4c/kWh,10

(2) the cost of PV does not reach the target when only subsidies, and not R&D, are implemented, and (3)11

production-related effects on technological advance—learning-by-doing and economies of scale—are not12

as critical to the long-term potential for cost reduction in organic PV than is the investment in and success13

of R&D. These results are insensitive to the intensity of either type of program, to the level of a carbon14

price, to the availability of storage technology, and to uncertainty in the main parameters used in the model.15

Sensitivity analysis also points to important influences on future cost. The central policy implication of these16
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results is that governments must find a way to engender this R&D, whether it is funded by the government1

itself or by the private sector in response to changing demand conditions. In fact, one might argue that the2

key question policy makers face in regards to PV development is how to encourage this R&D, rather than3

how to support economies of scale and learning-by-doing.4

We find that a case can still be made for subsidies, through our analysis of stochastic dominance. Because5

of the possibility of R&D failure, the benefits of subsidies second-order stochastically dominate those of6

R&D. In the event of R&D failure, subsidies make the costs of PV much lower than they otherwise would7

be, albeit not at levels close to the target. The importance of subsidies as a hedge against inherently uncertain8

R&D programs depends on the value that society places on the availability of a low-carbon energy source9

that is moderately inexpensive—that is, unlikely to be competitive with all other technologies, but perhaps10

inexpensive enough to be deployed at a large enough scale to diversify energy supply.11

While this study makes no claims about the applicability of these results to other technologies, the12

methodology developed is well suited for adaptation to other cases. Historically, technologies such as wind13

power have improved through similarly observable combinations of directed technical breakthroughs and14

demand-driven manufacturing improvements (Nemet, 2008). This methodology seems especially applicable15

to informing policy decisions about other pre-commercial technologies, those that are not yet in production16

at full scale. The most troublesome technologies for policy modeling are those that if successful will have17

a large impact on the energy system but that are at too early a stage for simple extrapolations of historical18

cost reductions. Cellulosic biofuels, carbon capture and sequestration, and automotive fuel cells all fit this19

description and are technologies for which this methodology is likely to provide insight.20

One application of this methodology in future work will be to compare the costs of these policies to the21

social benefits that will accrue from having low-cost carbon-free energy sources available. Stochastic opti-22

mization of the selection, timing, and levels of policy instruments can be employed to minimize the costs of23

meeting a technology cost goal. Although our conclusions about the relative effectiveness of policies remain24

valid across the full range of assumptions, the sensitivity analysis does suggest areas of further effort to un-25

derstand the most important determinants of future cost—in particular, the extent to which cost components26

decline with increasing manufacturing scale. Further, the finding that subsidies affect the time path of invest-27

ment in manufacturing capacity emphasizes the need to carefully evaluate the relative timing of subsides and28

30



R&D. Finally, the large dispersion in outcomes that results from inherently unpredictable R&D programs1

suggests that simultaneous consideration of policy choices among multiple low-carbon technologies may2

improve the robustness of technology-oriented polices to address climate change.3
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Figure 8: Sensitivity analysis: comparing PV costs in 2040 for two policy scenarios.

Appendix1

The supplemental information provided in this appendix will be posted on line.2

Capacity Factor3

Capacity factor is the amount of energy produced in a time period divided by the energy that would have4

been produced during that same period if the system were operating continuously at peak capacity. Using5

solar radiation data from the seven major cities surveyed, we find that the daily solar insolation averaged6

over the course of a year (I) is 4.4 kilowatt-hours per square meter Nemet (2007). For a given system7

efficiency, average energy input of I to the PV system would produce 18% of the electricity that would have8

been produced if the the peak sunshine level, S were maintained continuously over the course of a year. We9

calculate capacity factor, F , where h represents the number of hours in a year, 8760.10

F =
365 · I · η

S · h · η
=

365 · I

S · h

Sensitivity analysis results11

Figure 8 uses two policy combinations to show that the base case assumptions represent an upper bound on12

the effectiveness of subsidies. Table 11 shows the effects of changes in each model assumption on the cost13

of PV electricity in 2040. Table 12 shows the same for 2050. Table 13 shows the effect on the year at which14

the cost of PV electricity equals the target price, 4c/kWh.15
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Table 11: Sensitivity analysis: effect of changing parameter values on cost of PV electricity in 2040
no R&D low R&D high R&D

subsidy: none low high none low high none low high
Base case 0.536 0.201 0.162 0.111 0.042 0.035 0.0869 0.033 0.028
small b 0.536 0.229 0.209 0.111 0.047 0.044 0.0869 0.037 0.034
static BOS 0.536 0.372 0.325 0.111 0.111 0.067 0.0869 0.087 0.053
static m1 0.536 0.272 0.269 0.111 0.056 0.056 0.0869 0.044 0.044
delayed s 0.536 0.215 0.186 0.111 0.045 0.038 0.087 0.035 0.030
early R&D 0.536 0.201 0.162 0.024 0.023 0.027 0.017 0.017 0.020

Table 12: Sensitivity analysis: effect of changing parameter values on cost of PV electricity in 2050
no R&D low R&D high R&D

subsidy: none low high none low high none low high
Base case 0.536 0.200 0.162 0.014 0.016 0.016 0.009 0.010 0.010
small b 0.536 0.227 0.209 0.016 0.018 0.018 0.011 0.012 0.012
static BOS 0.536 0.372 0.325 0.029 0.029 0.030 0.019 0.019 0.020
static m1 0.536 0.271 0.269 0.023 0.024 0.024 0.015 0.016 0.016
delayed s 0.536 0.211 0.154 0.014 0.015 0.016 0.009 0.010 0.010
early R&D 0.536 0.200 0.162 0.018 0.017 0.014 0.009 0.009 0.010

Table 13: Sensitivity analysis: effect of changing parameter values on year at which cost of PV electricity
reaches 4c/kWh target

no R&D low R&D high R&D
subsidy: none low high none low high none low high

Base case — — — 2044 2040 2040 2043 2040 2040
small b — — — 2044 2042 2041 2043 2040 2040
static BOS — — — 2046 2046 2045 2044 2044 2043
static m1 — — — 2045 2043 2043 2044 2041 2041
delayed s — — — 2044 2041 2040 2043 2040 2040
early R&D — — — 2038 2036 2034 2036 2034 2034
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